GoogleとKaggleの共催で大量のビデオに自動的にタグ付けする機械学習アプリケーションの懸賞、賞金総額10万ドル

verticals-mosaic-6x3-big

GoogleとKaggleが今日(米国時間2/15)、機械学習の技術でビデオのタグ付けを自動化する方法の懸賞発表した

優勝賞金は3万ドルで、2位から4位まではそれぞれ2万5千、2万、1万5千、1万ドルの賞金をもらえる。応募するデベロッパーは、Googleが最近アップデートしたビデオデータの集合、YouTube-8M V2のビデオを分類してタグ付けする。700万本のYouTubeビデオから成るこのデータ集合は、計45万時間ぶんのビデオに相当する。ラベルはすでに付いているから、デベロッパーはそれを訓練データとして利用できる。ただし、まだ誰も見ていないビデオが70万本あるから、それらのタグ付けが難関だ。
kaggle
[ビデオのURL700万 総時間45万時間 オーディオ/ヴィジュアルフィーチャー32億 クラス4716 平均ラベル数3.4]

treemap-big

この懸賞を発表したまさに同じ日に、GoogleはTensorFlowの1.0をリリースしたが、おそらくそれは偶然ではない。懸賞で使用する機械学習フレームワークは、TensorFlowに限定されない。何を使ってもよい。しかしフルフレームで1.71TBにもなるこのデータ集合はGoogleのCloud Platform上にあるから、モデルの訓練にもGoogleのサービスを使うデベロッパーが多いだろう。しかも今回は、Cloud Platformを無料で使えるオプションもある。

先週Googleは、ビデオデータ集合YouTube-BoundingBoxesをローンチした。名前が示すとおり、このデータ集合(500万本のビデオ)には下図のように、各フレームにオブジェクトを指示するバウンディングボックス(囲み枠)がある。今回の懸賞でデベロッパーがそれらを使うことはないが、Googleがビデオの分類に関心を持っていることの表れでもある。日増しに成長を続けているYouTubeは、そこだけでの検索件数が、Google検索と競合するほかのどんな検索エンジンよりもたぶん多いのだ。

image00

[原文へ]
(翻訳:iwatani(a.k.a. hiwa))

投稿者:

TechCrunch Japan

TechCrunchは2005年にシリコンバレーでスタートし、スタートアップ企業の紹介やインターネットの新しいプロダクトのレビュー、そして業界の重要なニュースを扱うテクノロジーメディアとして成長してきました。現在、米国を始め、欧州、アジア地域のテクノロジー業界の話題をカバーしています。そして、米国では2010年9月に世界的なオンラインメディア企業のAOLの傘下となりその運営が続けられています。 日本では2006年6月から翻訳版となるTechCrunch Japanが産声を上げてスタートしています。その後、日本でのオリジナル記事の投稿やイベントなどを開催しています。なお、TechCrunch Japanも2011年4月1日より米国と同様に米AOLの日本法人AOLオンライン・ジャパンにより運営されています。