東北大学が電子のスピンをナノモーターの駆動力として提案、アインシュタインらによる実験で発見された磁気回転効果利用

東北大学が電子の「スピン」をナノモーターの駆動力として提案、アインシュタインが唯一かかわった実験で発見した磁気回転効果利用

東北大学は1月5日、アインシュタインが生涯で唯一かかわった実験で発見された磁気回転効果が、ナノモーターの動作原理に利用できることを量子論によって解明したと発表した。カーボンナノチューブと強磁性電極のハイブリッド構造で、ナノモーターの実現を目指すとしている。

ナノモーター(ナノ回転子)とは、電気モーターのように軸が回転するナノサイズの機構のこと。2層のカーボンナノチューブの外側のナノチューブを軸受けに、内側のナノチューブを軸にして回転させることでナノモーターを作る方法は以前から提案されていたが、その駆動方法については研究が進んでいなかった。そこで東北大学大学院理学研究科の泉田渉助教らによる研究グループは、磁気回転効果に着目した。

磁気回転効果は、20世紀初頭アインシュタインらにより検証・発見されたもので、磁石の磁気量を変えると、その変化量に応じて回転運動が生じるという現象。古典物理学では説明がつかず、後に量子論によって解明され、さらにそこから、電子には「スピン」という角運動量(回転の方向と大きさを表す量)があることがわかった。つまり電子は自転ができるということだ。量子力学的には、磁気回転効果は「電子の持つミクロな角運動量であるスピンと、マクロな物体の回転運動が相互変換される現象」となる。研究グループが提案したのは、2層構造のカーボンナノチューブと強磁性金属の電極を組み合わせ、電流を使ってスピンを回転運動に連続的に変換するという構造だ。

この機構は、ナノスケールの電気機械を回転駆動させるものだが、カーボンナノチューブだけでなく、小さな物体を回転させる技術に広く応用できるという。研究グループには、明治大学理工学部の奥山倫助教、仙台高等専門学校総合工学科の佐藤健太郎准教授、東京大学物性研究所の加藤岳生准教授、中国科学院大学カブリ理論科学研究所の松尾衛准教授が参加している。

名古屋大学が約1ナノミリのカーボンナノチューブ1本からなる超微小アンテナを開発、Wi-Fiにも対応

名古屋大学がカーボンナノチューブ1本からなる超微小アンテナを開発、電磁波を機械的な振動に変えてさらに電気信号に変換名古屋大学は11月17日、大規模なデジタルデータを受信可能なカーボンナノチューブ1本からなる極微小アンテナの開発を発表した。ナノスケールでありながら、安定した高精度のデータ伝送を実現できる。なおカーボンナノチューブとは、六角形の炭素ネットワークが直径約1nm(10億分の1m)の円筒状になったもの。

これは、名古屋大学未来材料・システム研究所の大野雄高教授と豊田中央研究所の舟山啓太研究員らによる共同研究。IoTやAIの利用拡大により、様々な情報を同時に高精度で検知するために、1つのシステムに多数のセンサーを設置する必要が生じてきた。そのため、センサーの小型化が求められている。それがこの研究の背景となっている。

通常のアンテナは、拾った電磁波を電気的な信号に直接変換する。だが、受信したい電波の波長によってその大きさが決まるため、どうしても数ミリから数センチの大きさになる。それに対してこの超微小アンテナは、電磁波を機械的な振動に変え、それを電気信号に変換するというもの。高い機械強度と優れた電気特性を持つカーボンナノチューブを使うことで、ナノスケールにまで小型化が可能になった。

名古屋大学がカーボンナノチューブ1本からなる超微小アンテナを開発、電磁波を機械的な振動に変えてさらに電気信号に変換

原理はこうだ。1本のカーボンナノチューブの一端を固定し、その先端からわずかに離れた場所に微小電極を配置する。ここに直流電圧をかけると、カーボンナノチューブの先端から微小電極に電子が飛び出して電流が流れる。そこに外部から信号(電磁波)が照射されると、カーボンナノチューブの中の電子に静電力が働き、信号に合わせてカーボンナノチューブが振動する。カーボンナノチューブと微小電極との間に流れる電流の大きさは、その距離によって変化するので、カーボンナノチューブが振動することで電流も増減する。これを信号として受け取る。

名古屋大学がカーボンナノチューブ1本からなる超微小アンテナを開発、電磁波を機械的な振動に変えてさらに電気信号に変換

アンテナが非常に小さく、信号から受け取るエネルギーも小さいためにノイズを受けやすいが、符号誤り訂正などのデジタル通信技術を組み合わせば、通信速度は現在主流のWi-Fi環境(80MHzの帯域幅)にも対応でき、通信速度は70Mbpsという十分な性能を発揮する。そのため、画像データやビデオ通話のような大容量データ通信への応用の可能性もあるという。また、さまざまな信号検出にも応用が可能で、生体内や大気中の情報などを直接検出できる可能性も秘めていると、同研究グループは話している。