トーマツが会社・勘定科目単位で不正を検知するAIモデルを開発、今後2年間で監査先100社以上のリスク評価手続に活用

トーマツが会社・勘定科目単位で不正を検知するAI・機械学習モデルを開発、今後2年間で監査先100社以上のリスク評価手続に活用

デロイト トーマツ グループの有限責任監査法人トーマツは1月7日、過去の不適切な財務データをAIに学習させることで、会社、勘定科目単位で不正を検知する不正検知モデルを開発し、2022年1月から本格導入を開始すると発表した。また、これまで活用してきた仕訳分析モデル異常検知モデル(2017年8月特許取得済)と組み合わせて、不正リスク評価から、対応手続の立案まで網羅的にAI・アナリティクスを活用するアプローチを確立した。不正検知モデルの開発などAIの活用を通じて、AI・データドリブンによる監査の高度化を目指す。

2015年以降、不適切会計が明らかになった企業の数は増加しており、コロナ禍による業績不振も勘案すると、今後もこの傾向は続くと考えられるという。不正の発生は、企業に大きな損失をもたらすものであり、いかに不正リスクを抑えるかが急務の課題と指摘している。

従来監査人は、監査先の財務データに対し、異常とみなす基準値や予算との比較、前期からの趨勢把握などによって、監査で重点的にフォローするグループ会社や勘定科目を選別していた。一方、今回同社が開発した不正検知モデルでは、上場企業の過去の不正の傾向をAI・機械学習モデルに学習させているため、監査人は監査先から財務データを入手し、不正検知モデルにデータを投入することで、予測モデルによる不正スコアの計算のもと、不正リスクが高い会社、勘定科目および財務指標を識別する。これにより、監査人は不正リスクの分析を効率的に行うとともに、従来識別しえなかった不正パターンの識別が行えるという。不正検知モデルで検知された不正の兆候に基づいて監査人が監査先企業との議論をより深化させることで、企業のガバナンス向上に貢献するとしている。

トーマツでは、不正検知モデルを一部活用した監査に着手しており、すでに10社超の上場会社の監査において、主に子会社のリスク評価手続に活用している。さらに、今後2年間で100社以上の監査先のリスク評価手続に活用することを目指しているという。また、不正検知モデルの更なる性能向上に向けて、監査先の同意を得た場合には当該監査先の財務情報をモデルの学習に用いることでモデルの精度を向上させることや、市況データのバリエーションを増やすことで、特に海外子会社に対するリスク評価の精度向上を予定している。

今回開発した不正検知モデルでは、予測性能に優れる勾配ブースティング技術を採用し、2005年以降に公表された有価証券報告書および訂正報告書に含まれる財務諸表と為替レート、物価指数などの市況データをAIに学習させて、複数の財務指標から不正企業と正常企業との相違性を見出し、その結果を不正企業との近似度として0~1の間でスコアリングする。

また、どの指標がスコアに影響しているのか、会社別の各指標の時系列推移や、指標値の算定に使用した勘定科目の実数値を詳細に確認できるため、AIが算出したスコアがなぜ高いのかを説明することが可能という。あわせて、不正リスクが高いと評価された企業と類似した不正シナリオを持つ過去の不正企業を参照できる仕組みも構築している。

これにより、これまで活用してきた仕訳分析モデルや異常検知モデルと組み合わせて、より広範な観点から不正の兆候を把握するリスク評価から、不正リスクの高い仕訳や取引に対して個別・詳細に分析を行い、リスク対応手続の立案まで網羅的にAI・アナリティクスを活用するアプローチを確立した。トーマツが会社・勘定科目単位で不正を検知するAIモデルを開発、今後2年間で監査先100社以上のリスク評価手続に活用

【インタビュー】デロイトトーマツのテクニカル・ディレクターが語る「データは客観的」の嘘

DXを語る上で無視できないデータ活用。業界を超えて先進企業が取り組んでいるが、Deloitte Tohmatsu(デロイト トーマツ)でテクニカル・ディレクターを務めるIvana Bartoletti(イヴァナ・バートレッティ)氏は「盲目的なデータ活用は課題解決につながりません」と警鐘を鳴らす。データはどう使われるべきなのか。現在のデータ活用方法にどのような問題があるのか。同氏が詳しく語った。

本記事はB’AIグローバル・フォーラム主催「Power, Politics, & AI:Building a Better Future
の講演をもとに編集・再構成したものである。

「データは客観的」なのか?

近年、DXの必要性が叫ばれ、データとAIの活用を進めようとする機運が高まるばかりだ。AIの機械学習により病気の症状が表出する以前に病気を発見するなど、前向きなデータ活用が拡大している。しかしバートレッティ氏は危機感を覚える。

「多くの人が『データは客観的なものだ』と思っています。だからこそ、意思決定や法整備にデータを活用すべきだという声が上がります。しかし、それではうまくいかないのです」と同氏は話す。

データを読み込んだAIが意思決定に活用されることで、結果として差別が再生産されることがあるからだ。

例えば、銀行などの金融機関が既存のデータをAIに学習させ、顧客の信用を予測させるとしよう。すると、男性の方が女性よりも高い信用があると結論され、その金融機関は男性に有利な方針を採用することがあり得る。なぜなら、これまでビジネス活動の重要ポジションの多くは男性により占有され、それにより女性の収入は男性の収入よりも一般的に少なかったからだ。同様の問題は人種の異なる者の間でも起きるだろう。

バートレッティ氏は「データの問題は、実は政治的な問題なのです」と指摘する。

差別をするのはアルゴリズムか、人間か

こうした議論を聞くと「差別的な結果が出てしまうのはアルゴリズムの問題だから、アルゴリズムを改善すれば良い」と考える人もいるかもしれない。

しかし、バートレッティ氏は「アルゴリズムは差別をしません。差別をもたらすのはシステムを作る人間です」と断言する。

ここで同氏は1つの例を挙げた。大きな都市の中心に1つの会社がある。この会社のCEOが自分の側近を社員の中から選ぼうと考えた。CEOはソフトウェアを使って自分の条件に合う社員を検索した。CEOは自分が午前7時に出勤するので、同じ時間に出勤する社員に絞り込んだ。

これだけでは「午前7時に出勤する社員」というのが検索の条件であるように見える。しかし、実際にはそうではない。

「朝早くに都市の中心の会社に出社できるのはどんな人でしょう?街中にアパートを借りる財力がある若い男性社員でしょうか?あるいは2人の子どもがいる郊外在住の女性社員でしょうか?この場合は若い男性社員でしょう」と同氏はCEOが気づいていない隠れた条件を説明する。その上で「重要なのは、差別やステレオタイプ、バイアスを自動化してしまうシステムに注意を払うことです」と話す。

データで未来は予測できるのか?

「AIは『客観的な』データを摂取することで答えを導き出すと思われています。しかし、客観的なデータ、中立的なデータなどというものは存在しません」とバートレッティ氏はいう。

なぜなら、データというものは「現在」という瞬間の写真でしかないからだ。つまり、データはこれまで積み重ねられてきたあらゆる差別や不平等が「今」どうなっているかということを見せるだけだ。こうした「今」や「今まで」をAIに取り込ませ、未来を予測しようとすれば、今現在起きている問題や差別を自動化し、継続させることしかできない。

「既存のデータで未来を予測することは、今、弱い立場にいる人々を抑圧することにつながります。AIの機械学習は今までのデータをもとにパターンを見つけ出し、方針を決定します。これは未来のあるべき姿を創造することとは異なります」とバートレッティ氏。

同氏はまた「システムは選択されるもので、自然とでき上がるものではありません。先程の金融機関の男女の信用の例で言えば、『データを活用する金融機関が女性に大きな信用を置く』というような状況は自然ともたらされることはないのです」という。

ダイバーシティを取り入れたデータ活用、AI活用に向けて

では、どうすれば前向きに、既存の差別構造を持ち込まずにデータやAIを活用できるのだろうか。

バートレッティ氏は「今、データ活用に関わる決定の場にいる女性の数は多くありません。女性などのマイノリティが意思決定の場にいなければ『これは問題ですよ』という人がいないということです。組織はデータ活用やアルゴリズムに関して公平・公正でなければなりません」と答える。

しかし、これには大きな課題が立ちはだかる。男性が多数派の意思決定の場に女性などのマイノリティを増やすということは、意思決定の場に今いる人々からすれば、自分の特権を手放すことを意味するからだ。既存の意思決定者たちが得るものもなく特権を手放すことは考えにくい。彼らがマイノリティの意思決定の参加を加速させることで得る利益はあるのだろうか。

バートレッティ氏は「彼らには2つの利益があります」という。

1つは自社の評判確保による利益の確保だ。データ活用の場、意思決定の場にマイノリティが参加していなければ、その事実が自社の評判を下げる。評判が下がれば、顧客が自社の商品やサービスを利用しなくなり、経済的な損失になるというのだ。そのため、自身の特権を手放してでも、意思決定の場にマイノリティを呼ぶことで、評判と利益を守る必要がある。

もう1つは人材確保だ。同氏は「IT企業に勤める人々は、テクノロジーを使って社会的に正しいことをしようと思っています。最近では、自社の方針が倫理的でない場合に、デモなどの行動に出る人たちもいます。つまり、優秀な人材に自社に居続けてもらうために、企業は倫理的でなければならないのです」と話す。

IT企業だけではない。例えば建設業界のエンジニア採用にAIを使う場合、これまでのデータをもとに良い人材を探すことになる。エンジニアには男性が多いため、AIは「良い人材=男性」という図式を踏襲してしまう。実際の能力ではなく、性別によって人材が選別されてしまうのだ。意思決定の場に女性が居れば、どのデータをどのように使うのか、良い人材の定義は何かなどを設定し、より適切なデータ活用をできるようになり、より良い人材を確保できる。

最後にバートレッティ氏は「データは万能、テクノロジーは万能と思わないでください。『適切なデータセットとは何か』という問いは政治的なものです。AIを有意義に使うためには、哲学者、歴史家など、多様なバックグラウンドの人材が必要です。『データ活用はすばらしい』かもしれませんが、誰にとって都合が良いのか考えてください。知らないうちに『自分にとって都合が良い』『男性にとって都合が良い』になっているかもしれませんよ」と語った。