AIロボットが何をつかんだかを判別可能に―九州工業大学、マテリアルベースのリザバー演算素子を開発

AIロボットが何をつかんだかを判別可能に―九州工業大学、マテリアルベースのリザバー演算素子開発とロボティクスへの応用に成功

九州工業大学は1月6日、ロボットアームのハンド部分から得られる感触信号から、ロボットが何をつかんだかを判別(把持物体認識)することに成功したと発表した。把持物体認識には、人工ニューラルネットワークの一種であるリザバー演算(RC)が使われるが、九州工業大学は、そのリザバー演算を、「単層カーボンナノチューブとポルフィリン、ポリオキソメタレートの複合体」(SWNT/Por-POM)からなる素子で行わせるという、画期的なアプローチをとった。

人間の脳を人工的に模倣するには、ランダムに接続されたニューロンとシナプスの動的な貯蔵庫(リザバー)を模倣する必要があり、それを実現したのが人工ニューラルネットワーク(ANN)だ。その一種であるリザバー演算は、貯蔵庫内での信号のランダムなフィードバックを忠実に再現して時系列データの学習を可能にしており、深層ニューラルネットワークに比べて、効率的・高速・シンプルで、生物の脳の仕組みに近い機械学習アーキテクチャーとされている。

AIロボットが何をつかんだかを判別可能に―九州工業大学、マテリアルベースのリザバー演算素子開発とロボティクスへの応用に成功

ところが、リザバー演算を既存コンピューター上でソフトウェアだけで行うことは技術的に難しく、ハードウェアからアプローチするパラダイムシフトが不可欠とされる。そこで、ソフトウェアと並行して物理的な挙動を演算ツールとして用いる「物理リザバー」が研究されている。なかでも九州工業大学の手法は、物理的挙動を示すマテリアル自身に演算を担わせる「マテリオRC」という新しい試みだ。

研究では、SWNT/Por-POMによるリザバーからなるランダムネットワークを作り、トヨタ自動車の生活支援ロボット「ヒューマンサポートロボット」のロボットハンドから得られた物体把持のセンシングデータを入力信号として使用した。それにより、異なる物を正しく分類する「インマテリオRCタスク」に成功した。

現在、画像による物体認識は広く行われているが、光量が少ない暗い場所では誤判定が生じる。そのため、特に介護の現場などでは触覚センサーによる把持物体認識の併用が重要になってくる。九州工業大学では、「生物学的なインターフェースで効率的な計算を実現できる、マテリアルベースのRCが賢い選択だということが今回の結果で示されました」と話している。SWNT/Por-POMは近い将来、「脳と同等の情報処理能力を持つと期待され、時系列予測や音声認識など他の複雑なAI問題に応用すること」が可能になるということだ。

この研究は、九州工業大学ニューロモルフィックAIハードウェア研究センターの田中啓文教授、田向権教授らからなる研究グループと、大阪大学の小川琢治元教授、カリフォルニア大学ロサンゼルス校のジムゼウスキー教授との共同によるもの。

宇宙で発生した電磁波が地上に伝わる5万キロにおよぶ「通り道」が世界で初めて解明される

「電磁波の通り道」を同時多地点観測する様子 ©ERGサイエンスチーム

「電磁波の通り道」を同時多地点観測する様子 ©ERGサイエンスチーム

金沢大学理工研究域電子情報通信学系松田昇也准教授らからなる国際研究チームは12月10日、複数の科学衛星と地上観測拠点で同時観測された電磁波とプラズマ粒子データなどから、電磁波の通り道の存在を世界で初めて突き止め、電磁波が地上へ伝わる仕組みを解明したと発表した

地球周辺の宇宙空間では、自然発生した電磁波が地球を取り巻く放射線帯を形成したりオーロラを光らせるなどの物理現象を引き起こしているが、1つの衛星や観測地点からの観測では、電磁波の伝搬経路全体を三次元的に捉えることができなかった。そこで研究グループは、日本のジオスペース探査衛星「あらせ」、アメリカの科学衛星「Van Allen Probes」、そして日本が世界に展開する地上観測拠点「PWING 誘導磁力計ネットワーク」とカナダが北米に展開する「CARISMA 誘導磁力計ネットワーク」を連携させて、同時に観測を行った。

それにより、宇宙空間の特定の場所で電磁波(イオン波)が生まれ、その一部だけが宇宙の遠く離れた場所や地上に届いていることがわかり、そのおよそ5万キロの旅の途中で宇宙のプラズマ環境変動を引き起こし、やがて地上に到達していることを解明した。

宇宙空間には冷たいプラズマが存在し、それが電磁波によって温められると、地上の大気の寒暖の変化のように、宇宙の環境が変化する。特に大規模な太陽フレアによる宇宙嵐が起きると大量の電磁波が発生し、人工衛星の故障、宇宙飛行士の放射線被曝、地上の送電網の障害など、多くの影響をもたらす。電磁波の通り道がわかれば、プラズマ環境変化が様々な場所で同時に発生する仕組みもわかる。

イオン波を4つの拠点で同時に捉えた観測結果

だがそれを解明するには、イオン波が発生している時間帯の、2つの科学衛星と2つの地上観測拠点の位置関係が大変に重要になる。研究グループは、そのタイミングを予測しつつイオン波の観測を続けたところ、2019年4月18日に4つの拠点でのイオン波の同時観測が達成され、同一のイオン波が地磁気赤道から地上に伝搬する「電磁波の通り道」が同定された。それによると、イオン波は5万キロの距離を移動するが、経路の断面はその1/1000ほどと小さい、細長いストロー状であり、広い宇宙空間で、きわめて局所的に伝搬経路が形成されていることもわかった。

あらせ、Van Allen Probesの衛星軌道と地上観測拠点の位置関係

「電磁波の通り道」が解明され、電磁波がどこで発生し、どう伝わるかがわかったことで、安全な宇宙利用に向けた「宇宙天気予報」の精度向上が期待されるという。同研究グループは「地球以外の惑星でも電磁波が発生し伝わっていく仕組みを解明し、宇宙環境変動の網羅的な理解と普遍性の解明へと歩みを進めていきたい」と話している。

この研究には、金沢大学の他、名古屋大学、東北大学、コロラド大学、ミネソタ大学、JAXA宇宙科学研究所、京都大学、九州工業大学、ロスアラモス国立研究所、ニューハンプシャー大学、情報通信研究機構、国立極地研究所、アルバータ大学などが参加している。