DeepMindのAIに負けた囲碁の世界チャンピオンが最終戦直前のゲームで勝利…AlphaGoを上回る妙手で

screen-shot-2016-03-13-at-11-24-49-am

マシン3勝、人間1勝…これが、DeepMindのAlphaGo対人間の囲碁世界チャンピオンLee Sedolの、5番勝負のこれまでの結果だ。

先週GoogleがオーナーであるそのAIは、Sedolとの初戦に勝って歴史的な勝利を達成した。初めてマシンが、世界クラスのプロの囲碁プレーヤーを負かしたのだ。その後、そのアルゴリズムは続く2試合にも勝って3連勝を達成、5番勝負における勝利を確定した。

しかし、まだ2試合残っている今となってSedolは、(The Vergeによれば)第4試合に勝ち、人類のために1勝を取り戻した。

DeepMindのファウンダーDemis Hassabisのツイート(下図)によると、マシンの負けは、第78手におけるSedolの妙手に圧(お)されて、致命的なミスを犯したためだ。

AlphaGoは、囲碁というとてつもなく複雑なゲームをマスターするために、二つの人工知能テクニックを併用している。それは、深層学習(deep learning, ディープラーニング、多段構造のニューラルネット)とモンテカルロツリー検索(Monte Carlo Tree Search)だ。それによりこのAIは、数百万のゲームをシミュレートでき、その結果から学んだことを一般化して囲碁の戦略を作り出す。明らかにその成功率は高いが、しかし不敗ではない。

今年の初めにGoogleのブログ記事は、AlphaGoの前に立ちふさがる複雑性というチャレンジを、こう説明している:

“囲碁には陣形が1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000とおりありえる。それは宇宙の原始の数よりも多く、チェスの10の100乗倍である”。

AlphaGoのSedolに対する勝利は、彼が世界第二位のプロの囲碁プレーヤーであるだけに、見事という言葉しかないが、人工知能は未だに、やれることの幅が極端に狭い。言い換えるとそれらはいずれも、きわめて特定的なタスクのために設計されている。チェスに、あるいはJeopardy(ジョパディ)に強くなるため、とか。

人工知能の究極の目標は言うまでもなく、汎用性のある学習AIを作ることだ。多面的なインテリジェンスを適用して、さまざまな種類の問題を解けること。そしてHassabis自身も認めるように、今の単一目的のAIマシンですら、オフボードゲームの世界の混沌とした複雑性において勝利を獲得することからは、まだまだはるかに、遠い位置にいるのだ。

人間が行う仕事は、一見単純なものですら、…たとえば部屋を片付けるようなことでも…、そこに存在する変数の数は、もっとも高度なマシンインテリジェンスですら愚鈍に見えるほどに、膨大なのだ。だからわれわれ人間は、囲碁に負けたぐらいで落ち込む必要はない。

このAlphaGoシリーズの最終戦は、3月15日に行われる。ライブの実況を、 YouTubeで観戦できる。

[原文へ]
(翻訳:iwatani(a.k.a. hiwa))

投稿者:

TechCrunch Japan

TechCrunchは2005年にシリコンバレーでスタートし、スタートアップ企業の紹介やインターネットの新しいプロダクトのレビュー、そして業界の重要なニュースを扱うテクノロジーメディアとして成長してきました。現在、米国を始め、欧州、アジア地域のテクノロジー業界の話題をカバーしています。そして、米国では2010年9月に世界的なオンラインメディア企業のAOLの傘下となりその運営が続けられています。 日本では2006年6月から翻訳版となるTechCrunch Japanが産声を上げてスタートしています。その後、日本でのオリジナル記事の投稿やイベントなどを開催しています。なお、TechCrunch Japanも2011年4月1日より米国と同様に米AOLの日本法人AOLオンライン・ジャパンにより運営されています。